
9
Switching models

Learning Outcomes

In this chapter, you will learn how to

● Use intercept and slope dummy variables to allow for seasonal
behaviour in time series

● Motivate the use of regime switching models in financial
econometrics

● Specify and explain the logic behind Markov switching models

● Compare and contrast Markov switching and threshold
autoregressive models

● Describe the intuition behind the estimation of regime
switching models

9.1 Motivations

Many financial and economic time series seem to undergo episodes in

which the behaviour of the series changes quite dramatically compared

to that exhibited previously. The behaviour of a series could change over

time in terms of its mean value, its volatility, or to what extent its current

value is related to its previous value. The behaviour may change once and

for all, usually known as a ‘structural break’ in a series. Or it may change

for a period of time before reverting back to its original behaviour or

switching to yet another style of behaviour, and the latter is typically

termed a ‘regime shift’ or ‘regime switch’.

9.1.1 What might cause one-off fundamental changes in the

properties of a series?

Usually, very substantial changes in the properties of a series are at-

tributed to large-scale events, such as wars, financial panics -- e.g. a ‘run
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on a bank’, significant changes in government policy, such as the intro-

duction of an inflation target, or the removal of exchange controls, or

changes in market microstructure -- e.g. the ‘Big Bang’, when trading on

the London Stock Exchange (LSE) became electronic, or a change in the

market trading mechanism, such as the partial move of the LSE from a

quote-driven to an order-driven system in 1997.

However, it is also true that regime shifts can occur on a regular basis

and at much higher frequency. Such changes may occur as a result of more

subtle factors, but still leading to statistically important modifications

in behaviour. An example would be the intraday patterns observed in

equity market bid--ask spreads (see chapter 6). These appear to start with

high values at the open, gradually narrowing throughout the day, before

widening again at the close.

To give an illustration of the kind of shifts that may be seen to occur,

figure 9.1 gives an extreme example.

As can be seen from figure 9.1, the behaviour of the series changes

markedly at around observation 500. Not only does the series become

much more volatile than previously, its mean value is also substantially

increased. Although this is a severe case that was generated using sim-

ulated data, clearly, in the face of such ‘regime changes’ a linear model

estimated over the whole sample covering the change would not be ap-

propriate. One possible approach to this problem would be simply to split

the data around the time of the change and to estimate separate models

on each portion. It would be possible to allow a series, yt to be drawn

from two or more different generating processes at different times. For

example, if it was thought an AR(1) process was appropriate to capture
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the relevant features of a particular series whose behaviour changed at

observation 500, say, two models could be estimated:

yt = μ1 + φ1 yt−1 + u1t before observation 500 (9.1)

yt = μ2 + φ2 yt−1 + u2t after observation 500 (9.2)

In the context of figure 9.1, this would involve focusing on the mean

shift only. These equations represent a very simple example of what is

known as a piecewise linear model -- that is, although the model is globally

(i.e. when it is taken as a whole) non-linear, each of the component parts

is a linear model.

This method may be valid, but it is also likely to be wasteful of in-

formation. For example, even if there were enough observations in each

sub-sample to estimate separate (linear) models, there would be an effi-

ciency loss in having fewer observations in each of two samples than if

all the observations were collected together. Also, it may be the case that

only one property of the series has changed -- for example, the (uncon-

ditional) mean value of the series may have changed, leaving its other

properties unaffected. In this case, it would be sensible to try to keep all

of the observations together, but to allow for the particular form of the

structural change in the model-building process. Thus, what is required

is a set of models that allow all of the observations on a series to be used

for estimating a model, but also that the model is sufficiently flexible to

allow different types of behaviour at different points in time. Two classes

of regime switching models that potentially allow this to occur are Markov

switching models and threshold autoregressive models.

A first and central question to ask is: How can it be determined where

the switch(es) occurs? The method employed for making this choice will

depend upon the model used. A simple type of switching model is one

where the switches are made deterministically using dummy variables.

One important use of this in finance is to allow for ‘seasonality’ in finan-

cial data. In economics and finance generally, many series are believed to

exhibit seasonal behaviour, which results in a certain element of partly

predictable cycling of the series over time. For example, if monthly or

quarterly data on consumer spending are examined, it is likely that the

value of the series will rise rapidly in late November owing to Christmas-

related expenditure, followed by a fall in mid-January, when consumers

realise that they have spent too much before Christmas and in the January

sales! Consumer spending in the UK also typically drops during the

August vacation period when all of the sensible people have left the coun-

try. Such phenomena will be apparent in many series and will be present

to some degree at the same time every year, whatever else is happening

in terms of the long-term trend and short-term variability of the series.
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9.2 Seasonalities in financial markets: introduction
and literature review

In the context of financial markets, and especially in the case of equi-

ties, a number of other ‘seasonal effects’ have been noted. Such effects

are usually known as ‘calendar anomalies’ or ‘calendar effects’. Exam-

ples include open- and close-of-market effects, ‘the January effect’, week-

end effects and bank holiday effects. Investigation into the existence or

otherwise of ‘calendar effects’ in financial markets has been the subject

of a considerable amount of recent academic research. Calendar effects

may be loosely defined as the tendency of financial asset returns to dis-

play systematic patterns at certain times of the day, week, month, or year.

One example of the most important such anomalies is the day-of-the-week

effect, which results in average returns being significantly higher on some

days of the week than others. Studies by French (1980), Gibbons and Hess

(1981) and Keim and Stambaugh (1984), for example, have found that the

average market close-to-close return in the US is significantly negative on

Monday and significantly positive on Friday. By contrast, Jaffe and West-

erfield (1985) found that the lowest mean returns for the Japanese and

Australian stock markets occur on Tuesdays.

At first glance, these results seem to contradict the efficient markets

hypothesis, since the existence of calendar anomalies might be taken

to imply that investors could develop trading strategies which make ab-

normal profits on the basis of such patterns. For example, holding all

other factors constant, equity purchasers may wish to sell at the close

on Friday and to buy at the close on Thursday in order to take advan-

tage of these effects. However, evidence for the predictability of stock re-

turns does not necessarily imply market inefficiency, for at least two rea-

sons. First, it is likely that the small average excess returns documented

by the above papers would not generate net gains when employed in a

trading strategy once the costs of transacting in the markets has been

taken into account. Therefore, under many ‘modern’ definitions of mar-

ket efficiency (e.g. Jensen, 1978), these markets would not be classified

as inefficient. Second, the apparent differences in returns on different

days of the week may be attributable to time-varying stock market risk

premiums.

If any of these calendar phenomena are present in the data but ignored

by the model-building process, the result is likely to be a misspecified

model. For example, ignored seasonality in yt is likely to lead to residual

autocorrelation of the order of the seasonality -- e.g. fifth order residual

autocorrelation if yt is a series of daily returns.
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9.3 Modelling seasonality in financial data

As discussed above, seasonalities at various different frequencies in finan-

cial time series data are so well documented that their existence cannot

be doubted, even if there is argument about how they can be rationalised.

One very simple method for coping with this and examining the degree

to which seasonality is present is the inclusion of dummy variables in re-

gression equations. The number of dummy variables that could sensibly

be constructed to model the seasonality would depend on the frequency

of the data. For example, four dummy variables would be created for quar-

terly data, 12 for monthly data, five for daily data and so on. In the case

of quarterly data, the four dummy variables would be defined as follows:

D1t = 1 in quarter 1 and zero otherwise

D2t = 1 in quarter 2 and zero otherwise

D3t = 1 in quarter 3 and zero otherwise

D4t = 1 in quarter 4 and zero otherwise

How many dummy variables can be placed in a regression model? If an

intercept term is used in the regression, the number of dummies that

could also be included would be one less than the ‘seasonality’ of the

data. To see why this is the case, consider what happens if all four dum-

mies are used for the quarterly series. The following gives the values that

the dummy variables would take for a period during the mid-1980s, to-

gether with the sum of the dummies at each point in time, presented in

the last column:

D1 D2 D3 D4 Sum

1986 Q1 1 0 0 0 1

Q2 0 1 0 0 1

Q3 0 0 1 0 1

Q4 0 0 0 1 1

1987 Q1 1 0 0 0 1

Q2 0 1 0 0 1

Q3 0 0 1 0 1

etc.

The sum of the four dummies would be 1 in every time period. Unfor-

tunately, this sum is of course identical to the variable that is implicitly

attached to the intercept coefficient. Thus, if the four dummy variables

and the intercept were both included in the same regression, the problem

would be one of perfect multicollinearity so that (X ′ X )−1 would not exist
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and none of the coefficients could be estimated. This problem is known

as the dummy variable trap. The solution would be either to just use three

dummy variables plus the intercept, or to use the four dummy variables

with no intercept.

The seasonal features in the data would be captured using either of

these, and the residuals in each case would be identical, although the

interpretation of the coefficients would be changed. If four dummy vari-

ables were used (and assuming that there were no explanatory variables

in the regression), the estimated coefficients could be interpreted as the

average value of the dependent variable during each quarter. In the case

where a constant and three dummy variables were used, the interpreta-

tion of the estimated coefficients on the dummy variables would be that

they represented the average deviations of the dependent variables for the

included quarters from their average values for the excluded quarter, as

discussed in the example below.

Box 9.1 How do dummy variables work?

The dummy variables as described above operate by changing the intercept, so that the

average value of the dependent variable, given all of the explanatory variables, is

permitted to change across the seasons. This is shown in figure 9.2.

xt
Q3

Q2

Q1

Q4

yt

3

1

1

2

Figure 9.2

Use of intercept

dummy variables for

quarterly data
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Consider the following regression

yt = β1 + γ1 D1t + γ2 D2t + γ3 D3t + β2x2t + · · · + ut (9.3)

During each period, the intercept will be changed. The intercept will be:

● β̂1 + γ̂1 in the first quarter, since D1 = 1 and D2 = D3 = 0 for all quarter 1

observations

● β̂1 + γ̂2 in the second quarter, since D2 = 1 and D1 = D3 = 0 for all quarter 2

observations.

● β̂1 + γ̂3 in the third quarter, since D3 = 1 and D1 = D2 = 0 for all quarter 3

observations

● β̂1 in the fourth quarter, since D1 = D2 = D3 = 0 for all quarter 4 observations.

Example 9.1

Brooks and Persand (2001a) examine the evidence for a day-of-the-week

effect in five Southeast Asian stock markets: South Korea, Malaysia,

the Philippines, Taiwan and Thailand. The data, obtained from Primark

Datastream, are collected on a daily close-to-close basis for all weekdays

(Mondays to Fridays) falling in the period 31 December 1989 to 19 Jan-

uary 1996 (a total of 1,581 observations). The first regressions estimated,

which constitute the simplest tests for day-of-the-week effects, are of the

form

rt = γ1 D1t + γ2 D2t + γ3 D3t + γ4 D4t + γ5 D5t + ut (9.4)

where rt is the return at time t for each country examined separately,

D1t is a dummy variable for Monday, taking the value 1 for all Monday

observations and zero otherwise, and so on. The coefficient estimates can

be interpreted as the average sample return on each day of the week. The

results from these regressions are shown in table 9.1.

Briefly, the main features are as follows. Neither South Korea nor the

Philippines have significant calendar effects; both Thailand and Malaysia

have significant positive Monday average returns and significant negative

Tuesday returns; Taiwan has a significant Wednesday effect.

Dummy variables could also be used to test for other calendar anoma-

lies, such as the January effect, etc. as discussed above, and a given re-

gression can include dummies of different frequencies at the same time.

For example, a new dummy variable D6t could be added to (9.4) for ‘April

effects’, associated with the start of the new tax year in the UK. Such a

variable, even for a regression using daily data, would take the value 1 for

all observations falling in April and zero otherwise.

If we choose to omit one of the dummy variables and to retain the in-

tercept, then the omitted dummy variable becomes the reference category
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Table 9.1 Values and significances of days of the week coefficients

Thailand Malaysia Taiwan South Korea Philippines

Monday 0.49E-3 0.00322 0.00185 0.56E-3 0.00119
(0.6740) (3.9804)∗∗ (2.9304)∗∗ (0.4321) (1.4369)

Tuesday −0.45E-3 −0.00179 −0.00175 0.00104 −0.97E-4
(−0.3692) (−1.6834) (−2.1258)∗∗ (0.5955) (−0.0916)

Wednesday −0.37E-3 −0.00160 0.31E-3 −0.00264 −0.49E-3
(−0.5005) (−1.5912) (0.4786) (−2.107)∗∗ (−0.5637)

Thursday 0.40E-3 0.00100 0.00159 −0.00159 0.92E-3
(0.5468) (1.0379) (2.2886)∗∗ (−1.2724) (0.8908)

Friday −0.31E-3 0.52E-3 0.40E-4 0.43E-3 0.00151
(−0.3998) (0.5036) (0.0536) (0.3123) (1.7123)

Notes: Coefficients are given in each cell followed by t -ratios in parentheses; ∗ and ∗∗

denote significance at the 5% and 1% levels, respectively.

Source: Brooks and Persand (2001a).

against which all the others are compared. For example consider a model

such as the one above, but where the Monday dummy variable has been

omitted

rt = α + γ2 D2t + γ3 D3t + γ4 D4t + γ5 D5t + ut (9.5)

The estimate of the intercept will be α̂ on Monday, α̂ + γ̂21 on Tuesday

and so on. γ̂2 will now be interpreted as the difference in average returns

between Monday and Tuesday. Similarly, γ̂3, . . . , γ̂5 can also be interpreted

as the differences in average returns between Wednesday, . . ., Friday, and

Monday.

This analysis should hopefully have made it clear that by thinking care-

fully about which dummy variable (or the intercept) to omit from the

regression, we can control the interpretation to test naturally the hypoth-

esis that is of most interest. The same logic can also be applied to slope

dummy variables, which are described in the following section.

9.3.1 Slope dummy variables

As well as, or instead of, intercept dummies, slope dummy variables can

also be used. These operate by changing the slope of the regression line,

leaving the intercept unchanged. Figure 9.3 gives an illustration in the

context of just one slope dummy (i.e. two different ‘states’). Such a setup
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xt

yt

yt = a + bxt + γDtxt + ut

yt = a + bxt + ut

Figure 9.3

Use of slope dummy

variables

would apply if, for example, the data were bi-annual (twice yearly) or bi-

weekly or observations made at the open and close of markets. Then Dt

would be defined as Dt = 1 for the first half of the year and zero for the

second half.

A slope dummy changes the slope of the regression line, leaving the

intercept unchanged. In the above case, the intercept is fixed at α, while

the slope varies over time. For periods where the value of the dummy is

zero, the slope will be β, while for periods where the dummy is one, the

slope will be β + γ .

Of course, it is also possible to use more than one dummy variable for

the slopes. For example, if the data were quarterly, the following setup

could be used, with D1t . . . D3t representing quarters 1--3.

yt = α + βxt + γ1 D1t xt + γ2 D2t xt + γ3 D3t xt + ut (9.6)

In this case, since there is also a term in xt with no dummy attached,

the interpretation of the coefficients on the dummies (γ1, etc.) is that

they represent the deviation of the slope for that quarter from the av-

erage slope over all quarters. On the other hand, if the 4 slope dummy

variables were included (and not βxt ), the coefficients on the dummies

would be interpreted as the average slope coefficients during each quarter.

Again, it is important not to include 4 quarterly slope dummies and the
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βxt in the regression together, otherwise perfect multicollinearity would

result.

Example 9.2

Returning to the example of day-of-the-week effects in Southeast Asian

stock markets, although significant coefficients in (9.4) will support the

hypothesis of seasonality in returns, it is important to note that risk fac-

tors have not been taken into account. Before drawing conclusions on the

potential presence of arbitrage opportunities or inefficient markets, it is

important to allow for the possibility that the market can be more or less

risky on certain days than others. Hence, low (high) significant returns in

(9.4) might be explained by low (high) risk. Brooks and Persand thus test

for seasonality using the empirical market model, whereby market risk is

proxied by the return on the FTA World Price Index. Hence, in order to

look at how risk varies across the days of the week, interactive (i.e. slope)

dummy variables are used to determine whether risk increases (decreases)

on the day of high (low) returns. The equation, estimated separately using

time-series data for each country can be written

rt =

(

5
∑

i=1

αi Di t + βi Di t RW Mt

)

+ ut (9.7)

where αi and βi are coefficients to be estimated, Di t is the i th dummy

variable taking the value 1 for day t = i and zero otherwise, and RW Mt is

the return on the world market index. In this way, when considering the

effect of market risk on seasonality, both risk and return are permitted to

vary across the days of the week. The results from estimation of (9.6) are

given in table 9.2. Note that South Korea and the Philippines are excluded

from this part of the analysis, since no significant calendar anomalies were

found to explain in table 9.1.

As can be seen, significant Monday effects in the Bangkok and Kuala

Lumpur stock exchanges, and a significant Thursday effect in the latter,

remain even after the inclusion of the slope dummy variables which allow

risk to vary across the week. The t -ratios do fall slightly in absolute value,

however, indicating that the day-of-the-week effects become slightly less

pronounced. The significant negative average return for the Taiwanese

stock exchange, however, completely disappears. It is also clear that aver-

age risk levels vary across the days of the week. For example, the betas for

the Bangkok stock exchange vary from a low of 0.36 on Monday to a high

of over unity on Tuesday. This illustrates that not only is there a significant

positive Monday effect in this market, but also that the responsiveness of
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Table 9.2 Day-of-the-week effects with the inclusion of interactive dummy variables

with the risk proxy

Thailand Malaysia Taiwan

Monday 0.00322 0.00185 0.544E-3
(3.3571)∗∗ (2.8025)∗∗ (0.3945)

Tuesday −0.00114 −0.00122 0.00140
(−1.1545) (−1.8172) (1.0163)

Wednesday −0.00164 0.25E-3 −0.00263
(−1.6926) (0.3711) (−1.9188)

Thursday 0.00104 0.00157 −0.00166
(1.0913) (2.3515)∗ (−1.2116)

Friday 0.31E-4 −0.3752 −0.13E-3
(0.03214) (−0.5680) (−0.0976)

Beta-Monday 0.3573 0.5494 0.6330
(2.1987)∗ (4.9284)∗∗ (2.7464)∗∗

Beta-Tuesday 1.0254 0.9822 0.6572
(8.0035)∗∗ (11.2708)∗∗ (3.7078)∗∗

Beta-Wednesday 0.6040 0.5753 0.3444
(3.7147)∗∗ (5.1870)∗∗ (1.4856)

Beta-Thursday 0.6662 0.8163 0.6055
(3.9313)∗∗ (6.9846)∗∗ (2.5146)∗

Beta-Friday 0.9124 0.8059 1.0906
(5.8301)∗∗ (7.4493)∗∗ (4.9294)∗∗

Notes: Coefficients are given in each cell followed by t -ratios in parentheses; ∗ and ∗∗

denote significance at the 5% and 1%, levels respectively.

Source: Brooks and Persand (2001a).

Bangkok market movements to changes in the value of the general world

stock market is considerably lower on this day than on other days of the

week.

9.3.2 Dummy variables for seasonality in EViews

The most commonly observed calendar effect in monthly data is a January

effect. In order to examine whether there is indeed a January effect in a

monthly time series regression, a dummy variable is created that takes the

value 1 only in the months of January. This is easiest achieved by creating

a new dummy variable called JANDUM containing zeros everywhere, and

then editing the variable entries manually, changing all of the zeros for

January months to ones. Returning to the Microsoft stock price example

of chapters 3 and 4, Create this variable using the methodology described
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above, and run the regression again including this new dummy variable

as well. The results of this regression are:

Dependent Variable: ERMSOFT
Method: Least Squares
Date: 09/06/07 Time: 20:45
Sample (adjusted): 1986M05 2007M04
Included observations: 252 after adjustments

Coefficient Std. Error t-Statistic Prob.

C −0.574717 1.334120 −0.430783 0.6670
ERSANDP 1.522142 0.183517 8.294282 0.0000
DPROD 0.522582 0.450995 1.158730 0.2477

DCREDIT −6.27E-05 0.000144 −0.435664 0.6635
DINFLATION 2.162911 3.048665 0.709462 0.4787

DMONEY −1.412355 0.641359 −2.202129 0.0286
DSPREAD 8.944002 12.16534 0.735203 0.4629
RTERM 6.944576 2.978703 2.331409 0.0206

FEB89DUM −68.52799 12.62302 −5.428811 0.0000
FEB03DUM −66.93116 12.60829 −5.308503 0.0000
JANDUM 6.140623 3.277966 1.873303 0.0622

R-squared 0.368162 Mean dependent var −0.420803
Adjusted R-squared 0.341945 S.D. dependent var 15.41135
S.E. of regression 12.50178 Akaike info criterion 7.932288
Sum squared resid 37666.97 Schwarz criterion 8.086351
Log likelihood −988.4683 Hannan-Quinn criter. 7.994280
F-statistic 14.04271 Durbin-Watson stat 2.135471
Prob(F-statistic) 0.000000

As can be seen, the dummy is just outside being statistically significant

at the 5% level, and it has the expected positive sign. The coefficient value

of 6.14, suggests that on average and holding everything else equal, Mi-

crosoft stock returns are around 6% higher in January than the average

for other months of the year.

9.4 Estimating simple piecewise linear functions

The piecewise linear model is one example of a general set of models

known as spline techniques. Spline techniques involve the application of

polynomial functions in a piecewise fashion to different portions of the

data. These models are widely used to fit yield curves to available data on

the yields of bonds of different maturities (see, for example, Shea, 1984).

A simple piecewise linear model could operate as follows. If the rela-

tionship between two series, y and x , differs depending on whether x is
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smaller or larger than some threshold value x∗, this phenomenon can be

captured using dummy variables. A dummy variable, Dt , could be defined,

taking values

Dt =

{

0 if xt < x∗

1 if xt ≥ x∗
(9.8)

To offer an illustration of where this may be useful, it is sometimes the

case that the tick size limits vary according to the price of the asset. For

example, according to George and Longstaff (1993, see also chapter 6 of

this book), the Chicago Board of Options Exchange (CBOE) limits the tick

size to be $(1/8) for options worth $3 or more, and $(1/16) for options worth

less than $3. This means that the minimum permissible price movements

are $(1/8) and ($1/16) for options worth $3 or more and less than $3,

respectively. Thus, if y is the bid--ask spread for the option, and x is the

option price, used as a variable to partly explain the size of the spread,

the spread will vary with the option price partly in a piecewise manner

owing to the tick size limit. The model could thus be specified as

yt = β1 + β2xt + β3 Dt + β4 Dt xt + ut (9.9)

with Dt defined as above. Viewed in the light of the above discussion on

seasonal dummy variables, the dummy in (9.8) is used as both an intercept

and a slope dummy. An example showing the data and regression line is

given by figure 9.4.

Note that the value of the threshold or ‘knot’ is assumed known at

this stage. Throughout, it is also possible that this situation could be

xt

yt

Threshold
value of x

Figure 9.4

Piecewise linear

model with

threshold x∗
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generalised to the case where yt is drawn from more than two regimes or

is generated by a more complex model.

9.5 Markov switching models

Although a large number of more complex, non-linear threshold mod-

els have been proposed in the econometrics literature, only two kinds of

model have had any noticeable impact in finance (aside from threshold

GARCH models of the type alluded to in chapter 8). These are the Markov

regime switching model associated with Hamilton (1989, 1990), and the

threshold autoregressive model associated with Tong (1983, 1990). Each of

these formulations will be discussed below.

9.5.1 Fundamentals of Markov switching models

Under the Markov switching approach, the universe of possible occur-

rences is split into m states of the world, denoted si , i = 1, . . . , m, cor-

responding to m regimes. In other words, it is assumed that yt switches

regime according to some unobserved variable, st , that takes on integer

values. In the remainder of this chapter, it will be assumed that m = 1

or 2. So if st = 1, the process is in regime 1 at time t , and if st = 2, the

process is in regime 2 at time t . Movements of the state variable between

regimes are governed by a Markov process. This Markov property can be

expressed as

P[a < yt ≤ b | y1, y2, . . . , yt−1] = P[a < yt ≤ b | yt−1] (9.10)

In plain English, this equation states that the probability distribution

of the state at any time t depends only on the state at time t − 1 and

not on the states that were passed through at times t − 2, t − 3, . . . Hence

Markov processes are not path-dependent. The model’s strength lies in its

flexibility, being capable of capturing changes in the variance between

state processes, as well as changes in the mean.

The most basic form of Hamilton’s model, also known as ‘Hamilton’s

filter’ (see Hamilton, 1989), comprises an unobserved state variable, de-

noted zt , that is postulated to evaluate according to a first order Markov

process

prob[zt = 1|zt−1 = 1] = p11 (9.11)

prob[zt = 2|zt−1 = 1] = 1 − p11 (9.12)

prob[zt = 2|zt−1 = 2] = p22 (9.13)

prob[zt = 1|zt−1 = 2] = 1 − p22 (9.14)
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where p11 and p22 denote the probability of being in regime one, given

that the system was in regime one during the previous period, and the

probability of being in regime two, given that the system was in regime

two during the previous period, respectively. Thus 1 − p11 defines the prob-

ability that yt will change from state 1 in period t − 1 to state 2 in period

t , and 1 − p22 defines the probability of a shift from state 2 to state 1

between times t − 1 and t . It can be shown that under this specification,

zt evolves as an AR(1) process

zt = (1 − p11) + ρzt−1 + ηt (9.15)

where ρ = p11 + p22 − 1. Loosely speaking, zt can be viewed as a gener-

alisation of the dummy variables for one-off shifts in a series discussed

above. Under the Markov switching approach, there can be multiple shifts

from one set of behaviour to another.

In this framework, the observed returns series evolves as given by (9.15)

yt = μ1 + μ2zt + (σ 2
1 + φzt )

1/2ut (9.16)

where ut ∼ N(0, 1). The expected values and variances of the series are μ1

and σ 2
1 , respectively in state 1, and (μ1 + μ2) and σ 2

1 + φ in respectively,

state 2. The variance in state 2 is also defined, σ 2
2 = σ 2

1 + φ. The unknown

parameters of the model (μ1, μ2, σ
2
1 , σ 2

2 , p11, p22) are estimated using max-

imum likelihood. Details are beyond the scope of this book, but are most

comprehensively given in Engel and Hamilton (1990).

If a variable follows a Markov process, all that is required to forecast the

probability that it will be in a given regime during the next period is the

current period’s probability and a set of transition probabilities, given for

the case of two regimes by (9.11)--(9.14). In the general case where there

are m states, the transition probabilities are best expressed in a matrix as

P =

⎡

⎢

⎢

⎣

P11 P12 . . . P1m

P21 P22 . . . P2m

. . . . . . . . . . . .

Pm1 Pm2 . . . Pmm

⎤

⎥

⎥

⎦

(9.17)

where Pi j is the probability of moving from regime i to regime j . Since,

at any given time, the variable must be in one of the m states, it must be

true that
m

∑

j=1

Pi j = 1∀i (9.18)

A vector of current state probabilities is then defined as

πt = [π1 π2 . . . πm ] (9.19)
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where πi is the probability that the variable y is currently in state i . Given

πt and P , the probability that the variable y will be in a given regime next

period can be forecast using

πt+1 = πt P (9.20)

The probabilities for S steps into the future will be given by

πt+s = πt P s (9.21)

9.6 A Markov switching model for the real exchange rate

There have been a number of applications of the Markov switching model

in finance. Clearly, such an approach is useful when a series is thought to

undergo shifts from one type of behaviour to another and back again, but

where the ‘forcing variable’ that causes the regime shifts is unobservable.

One such application is to modelling the real exchange rate. As dis-

cussed in chapter 7, purchasing power parity (PPP) theory suggests that

the law of one price should always apply in the long run such that the

cost of a representative basket of goods and services is the same wher-

ever it is purchased, after converting it into a common currency. Under

some assumptions, one implication of PPP is that the real exchange rate

(that is, the exchange rate divided by a general price index such as the

consumer price index (CPI)) should be stationary. However, a number of

studies have failed to reject the unit root null hypothesis in real exchange

rates, indicating evidence against the PPP theory.

It is widely known that the power of unit root tests is low in the presence

of structural breaks as the ADF test finds it difficult to distinguish between

a stationary process subject to structural breaks and a unit root process.

In order to investigate this possibility, Bergman and Hansson (2005) es-

timate a Markov switching model with an AR(1) structure for the real

exchange rate, which allows for multiple switches between two regimes.

The specification they use is

yt = μst
+ φyt−1 + ǫt (9.22)

where yt is the real exchange rate, st , (t = 1, 2) are the two states, and

ǫt ∼ N (0, σ 2).1 The state variable st is assumed to follow a standard

2-regime Markov process as described above.

1 The authors also estimate models that allow φ and σ 2 to vary across the states, but the

restriction that the parameters are the same across the two states cannot be rejected

and hence the values presented in the study assume that they are constant.
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Quarterly observations from 1973Q2 to 1997Q4 (99 data points) are used

on the real exchange rate (in units of foreign currency per US dollar) for

the UK, France, Germany, Switzerland, Canada and Japan. The model is

estimated using the first 72 observations (1973Q2--1990Q4) with the re-

mainder retained for out-of-sample forecast evaluation. The authors use

100 times the log of the real exchange rate, and this is normalised to take

a value of one for 1973Q2 for all countries. The Markov switching model

estimates obtained using maximum likelihood estimation are presented

in table 9.3.

As the table shows, the model is able to separate the real exchange rates

into two distinct regimes for each series, with the intercept in regime

one (μ1) being positive for all countries except Japan (resulting from the

phenomenal strength of the yen over the sample period), corresponding

to a rise in the log of the number of units of the foreign currency per US

dollar, i.e. a depreciation of the domestic currency against the dollar. μ2,

the intercept in regime 2, is negative for all countries, corresponding to

a domestic currency appreciation against the dollar. The probabilities of

remaining within the same regime during the following period (p11 and

p22) are fairly low for the UK, France, Germany and Switzerland, indicating

fairly frequent switches from one regime to another for those countries’

currencies.

Interestingly, after allowing for the switching intercepts across the

regimes, the AR(1) coefficient, φ, in table 9.3 is a considerable distance

below unity, indicating that these real exchange rates are stationary.

Bergman and Hansson simulate data from the stationary Markov switch-

ing AR(1) model with the estimated parameters but they assume that the

researcher conducts a standard ADF test on the artificial data. They find

that for none of the cases can the unit root null hypothesis be rejected,

even though clearly this null is wrong as the simulated data are station-

ary. It is concluded that a failure to account for time-varying intercepts

(i.e. structural breaks) in previous empirical studies on real exchange rates

could have been the reason for the finding that the series are unit root

processes when the financial theory had suggested that they should be

stationary.

Finally, the authors employ their Markov switching AR(1) model for fore-

casting the remainder of the exchange rates in the sample in comparison

with the predictions produced by a random walk and by a Markov switch-

ing model with a random walk. They find that for all six series, and for

forecast horizons up to 4 steps (quarters) ahead, their Markov switching AR

model produces predictions with the lowest mean squared errors; these

improvements over the pure random walk are statistically significant.
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9.7 A Markov switching model for the gilt–equity yield ratio

As discussed below, a Markov switching approach is also useful for mod-

elling the time series behaviour of the gilt--equity yield ratio (GEYR), de-

fined as the ratio of the income yield on long-term government bonds to

the dividend yield on equities. It has been suggested that the current value

of the GEYR might be a useful tool for investment managers or market

analysts in determining whether to invest in equities or whether to invest

in gilts. Thus the GEYR is purported to contain information useful for de-

termining the likely direction of future equity market trends. The GEYR

is assumed to have a long-run equilibrium level, deviations from which

are taken to signal that equity prices are at an unsustainable level. If the

GEYR becomes high relative to its long-run level, equities are viewed as

being expensive relative to bonds. The expectation, then, is that for given

levels of bond yields, equity yields must rise, which will occur via a fall in

equity prices. Similarly, if the GEYR is well below its long-run level, bonds

are considered expensive relative to stocks, and by the same analysis, the

price of the latter is expected to increase. Thus, in its crudest form, an

equity trading rule based on the GEYR would say, ‘if the GEYR is low, buy

equities; if the GEYR is high, sell equities’. The paper by Brooks and Per-

sand (2001b) discusses the usefulness of the Markov switching approach

in this context, and considers whether profitable trading rules can be

developed on the basis of forecasts derived from the model.

Brooks and Persand (2001b) employ monthly stock index dividend yields

and income yields on government bonds covering the period January 1975

until August 1997 (272 observations) for three countries -- the UK, the US

and Germany. The series used are the dividend yield and index values

of the FTSE100 (UK), the S&P500 (US) and the DAX (Germany). The bond

indices and redemption yields are based on the clean prices of UK govern-

ment consols, and US and German 10-year government bonds.

As an example, figure 9.5 presents a plot of the distribution of the GEYR

for the US (in bold), together with a normal distribution having the same

mean and variance. Clearly, the distribution of the GEYR series is not

normal, and the shape suggests two separate modes: one upper part of

the distribution embodying most of the observations, and a lower part

covering the smallest values of the GEYR.

Such an observation, together with the notion that a trading rule should

be developed on the basis of whether the GEYR is ‘high’ or ‘low’, and in

the absence of a formal econometric model for the GEYR, suggests that a

Markov switching approach may be useful. Under the Markov switching

approach, the values of the GEYR are drawn from a mixture of normal
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Table 9.4 Estimated parameters for the Markov switching models

μ1 μ2 σ 2
1 σ 2

2 p11 p22 N1 N2

Statistic (1) (2) (3) (4) (5) (6) (7) (8)

UK 2.4293 2.0749 0.0624 0.0142 0.9547 0.9719 102 170
(0.0301) (0.0367) (0.0092) (0.0018) (0.0726) (0.0134)

US 2.4554 2.1218 0.0294 0.0395 0.9717 0.9823 100 172
(0.0181) (0.0623) (0.0604) (0.0044) (0.0171) (0.0106)

Germany 3.0250 2.1563 0.5510 0.0125 0.9816 0.9328 200 72
(0.0544) (0.0154) (0.0569) (0.0020) (0.0107) (0.0323)

Notes: Standard errors in parentheses; N1 and N2 denote the number of observations

deemed to be in regimes 1 and 2, respectively.

Source: Brooks and Persand (2001b).

distributions, where the weights attached to each distribution sum to

one and where movements between series are governed by a Markov pro-

cess. The Markov switching model is estimated using a maximum likeli-

hood procedure (as discussed in chapter 8), based on GAUSS code supplied

by James Hamilton. Coefficient estimates for the model are presented in

table 9.4.

The means and variances for the values of the GEYR for each of the two

regimes are given in columns headed (1)--(4) of table 9.4 with standard

errors associated with each parameter in parentheses. It is clear that the
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regime switching model has split the data into two distinct samples -- one

with a high mean (of 2.43, 2.46 and 3.03 for the UK, US and Germany,

respectively) and one with a lower mean (of 2.07, 2.12, and 2.16), as was

anticipated from the unconditional distribution of returns. Also apparent

is the fact that the UK and German GEYR are more variable at times

when it is in the high mean regime, evidenced by their higher variance

(in fact, it is around four and 20 times higher than for the low GEYR state,

respectively). The number of observations for which the probability that

the GEYR is in the high mean state exceeds 0.5 (and thus when the GEYR

is actually deemed to be in this state) is 102 for the UK (37.5% of the total),

while the figures for the US are 100 (36.8%) and for Germany 200 (73.5%).

Thus, overall, the GEYR is more likely to be in the low mean regime for

the UK and US, while it is likely to be high in Germany.

The columns marked (5) and (6) of table 9.4 give the values of p11 and

p22, respectively, that is the probability of staying in state 1 given that

the GEYR was in state 1 in the immediately preceding month, and the

probability of staying in state 2 given that the GEYR was in state 2 previ-

ously, respectively. The high values of these parameters indicates that the

regimes are highly stable with less than a 10% chance of moving from a

low GEYR to a high GEYR regime and vice versa for all three series. Figure

9.6 presents a ‘q -plot’, which shows the value of GEYR and probability that

it is in the high GEYR regime for the UK at each point in time.
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As can be seen, the probability that the UK GEYR is in the ‘high’ regime

(the dotted line) varies frequently, but spends most of its time either close

to zero or close to one. The model also seems to do a reasonably good job

of specifying which regime the UK GEYR should be in, given that the prob-

ability seems to match the broad trends in the actual GEYR (the full line).

Engel and Hamilton (1990) show that it is possible to give a forecast of

the probability that a series yt , which follows a Markov switching process,

will be in a particular regime. Brooks and Persand (2001b) use the first

60 observations (January 1975--December 1979) for in-sample estimation

of the model parameters (μ1, μ2, σ 2
1 , σ 2

2 , p11, p22). Then a one step-ahead

forecast is produced of the probability that the GEYR will be in the high

mean regime during the next period. If the probability that the GEYR

will be in the low regime during the next period is forecast to be more

that 0.5, it is forecast that the GEYR will be low and hence equities are

bought or held. If the probability that the GEYR is in the low regime is

forecast to be less than 0.5, it is anticipated that the GEYR will be high and

hence gilts are invested in or held. The model is then rolled forward one

observation, with a new set of model parameters and probability forecasts

being constructed. This process continues until 212 such probabilities are

estimated with corresponding trading rules.

The returns for each out-of-sample month for the switching portfolio

are calculated, and their characteristics compared with those of buy-and-

hold equities and buy-and-hold gilts strategies. Returns are calculated as

continuously compounded percentage returns on a stock (the FTSE in

the UK, the S&P500 in the US, the DAX in Germany) or on a long-term

government bond. The profitability of the trading rules generated by the

forecasts of the Markov switching model are found to be superior in gross

terms compared with a simple buy-and-hold equities strategy. In the UK

context, the former yields higher average returns and lower standard de-

viations. The switching portfolio generates an average return of 0.69% per

month, compared with 0.43% for the pure bond and 0.62% for the pure

equity portfolios. The improvements are not so clear-cut for the US and

Germany. The Sharpe ratio for the UK Markov switching portfolio is al-

most twice that of the buy-and-hold equities portfolio, suggesting that,

after allowing for risk, the switching model provides a superior trading

rule. The improvement in the Sharpe ratio for the other two countries is,

on the contrary, only very modest.

To summarise:

● The Markov switching approach can be used to model the gilt-equity

yield ratio
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● The resulting model can be used to produce forecasts of the probability

that the GEYR will be in a particular regime

● Before transactions costs, a trading rule derived from the model pro-

duces a better performance than a buy-and-hold equities strategy, in

spite of inferior predictive accuracy as measured statistically

● Net of transactions costs, rules based on the Markov switching model

are not able to beat a passive investment in the index for any of the

three countries studied.

9.8 Threshold autoregressive models

Threshold autoregressive (TAR) models are one class of non-linear autore-

gressive models. Such models are a relatively simple relaxation of standard

linear autoregressive models that allow for a locally linear approximation

over a number of states. According to Tong (1990, p. 99), the threshold

principle ‘allows the analysis of a complex stochastic system by decom-

posing it into a set of smaller sub-systems’. The key difference between

TAR and Markov switching models is that, under the former, the state

variable is assumed known and observable, while it is latent under the

latter. A very simple example of a threshold autoregressive model is given

by (9.23). The model contains a first order autoregressive process in each

of two regimes, and there is only one threshold. Of course, the number

of thresholds will always be the number of regimes minus one. Thus,

the dependent variable yt is purported to follow an autoregressive process

with intercept coefficient μ1 and autoregressive coefficient φ1 if the value

of the state-determining variable lagged k periods, denoted st−k is lower

than some threshold value r . If the value of the state-determining variable

lagged k periods, is equal to or greater than that threshold value r , yt is

specified to follow a different autoregressive process, with intercept coef-

ficient μ2 and autoregressive coefficient φ2. The model would be written

yt =

{

μ1 + φ1 yt−1 + u1t if st−k < r

μ2 + φ2 yt−1 + u2t if st−k ≥ r
(9.23)

But what is st−k , the state-determining variable? It can be any variable

that is thought to make yt shift from one set of behaviour to another.

Obviously, financial or economic theory should have an important role

to play in making this decision. If k = 0, it is the current value of the

state-determining variable that influences the regime that y is in at

time t , but in many applications k is set to 1, so that the immediately

preceding value of s is the one that determines the current value of y.
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The simplest case for the state determining variable is where it is the

variable under study, i.e. st−k = yt−k . This situation is known as a self-

exciting TAR, or a SETAR, since it is the lag of the variable y itself that

determines the regime that y is currently in. The model would now be

written

yt =

{

μ1 + φ1 yt−1 + u1t if yt−k < r

μ2 + φ2 yt−1 + u2t if yt−k ≥ r
(9.24)

The models of (9.23) or (9.24) can of course be extended in several direc-

tions. The number of lags of the dependent variable used in each regime

may be higher than one, and the number of lags need not be the same for

both regimes. The number of states can also be increased to more than

two. A general threshold autoregressive model, that notationally permits

the existence of more than two regimes and more than one lag, may be

written

xt =

J
∑

j=1

I
( j)
t

(

φ
( j)

0 +

p j
∑

i=1

φ
( j)

i xt−i + u
( j)
t

)

, r j−1 ≤ zt−d ≤ r j (9.25)

where I
( j)
t is an indicator function for the j th regime taking the value

one if the underlying variable is in state j and zero otherwise. zt−d is

an observed variable determining the switching point and u
( j)
t is a zero-

mean independently and identically distributed error process. Again, if

the regime changes are driven by own lags of the underlying variable, xt

(i.e. zt−d = xt−d ), then the model is a self-exciting TAR (SETAR).

It is also worth re-stating that under the TAR approach, the variable

y is either in one regime or another, given the relevant value of s, and

there are discrete transitions between one regime and another. This is in

contrast with the Markov switching approach, where the variable y is in

both states with some probability at each point in time. Another class of

threshold autoregressive models, known as smooth transition autoregres-

sions (STAR), allows for a more gradual transition between the regimes

by using a continuous function for the regime indicator rather than an

on--off switch (see Franses and van Dijk, 2000, chapter 3).

9.9 Estimation of threshold autoregressive models

Estimation of the model parameters (φi , r j , d, p j ) is considerably more dif-

ficult than for a standard linear autoregressive process, since in general

they cannot be determined simultaneously in a simple way, and the values
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chosen for one parameter are likely to influence estimates of the others.

Tong (1983, 1990) suggests a complex non-parametric lag regression proce-

dure to estimate the values of the thresholds (r j ) and the delay parameter

(d).

Ideally, it may be preferable to endogenously estimate the values of

the threshold(s) as part of the non-linear least squares (NLS) optimisation

procedure, but this is not feasible. The underlying functional relationship

between the variables is discontinuous in the thresholds, such that the

thresholds cannot be estimated at the same time as the other components

of the model. One solution to this problem that is sometimes used in

empirical work is to use a grid search procedure that seeks the minimal

residual sum of squares over a range of values of the threshold(s) for an

assumed model. Some sample code to achieve this is presented later in

this chapter.

9.9.1 Threshold model order (lag length) determination

A simple, although far from ideal, method for determining the appropri-

ate lag lengths for the autoregressive components for each of the regimes

would be to assume that the same number of lags are required in all

regimes. The lag length is then chosen in the standard fashion by deter-

mining the appropriate lag length for a linear autoregressive model, and

assuming that the lag length for all states of the TAR is the same. While

it is easy to implement, this approach is clearly not a good one, for it is

unlikely that the lag lengths for each state when the data are drawn from

different regimes would be the same as that appropriate when a linear

functional form is imposed. Moreover, it is undesirable to require the lag

lengths to be the same in each regime. This conflicts with the notion that

the data behave differently in different states, which was precisely the

motivation for considering threshold models in the first place.

An alternative and better approach, conditional upon specified thresh-

old values, would be to employ an information criterion to select across

the lag lengths in each regime simultaneously. A drawback of this ap-

proach, that Franses and van Dijk (2000) highlight, is that in practice it is

often the case that the system will be resident in one regime for a consid-

erably longer time overall than the others. In such situations, information

criteria will not perform well in model selection for the regime(s) contain-

ing few observations. Since the number of observations is small in these

cases, the overall reduction in the residual sum of squares as more param-

eters are added to these regimes will be very small. This leads the criteria

to always select very small model orders for states containing few obser-

vations. A solution, therefore, is to define an information criterion that
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does not penalise the whole model for additional parameters in one state.

Tong (1990) proposes a modified version of Akaike’s information criterion

(AIC) that weights σ̂ 2 for each regime by the number of observations in

that regime. For the two-regime case, the modified AIC would be written

AIC (p1, p2) = T1 ln σ̂ 2
1 + T2 ln σ̂ 2

2 + 2(p1 + 1) + 2(p2 + 1) (9.26)

where T1 and T2 are the number of observations in regimes 1 and 2, re-

spectively, p1 and p2 are the lag lengths and σ̂ 2
1 and σ̂ 2

2 are the residual

variances. Similar modifications can of course be developed for other in-

formation criteria.

9.9.2 Determining the delay parameter, d

The delay parameter, d, can be decided in a variety of ways. It can be deter-

mined along with the lag orders for each of the regimes by an information

criterion, although of course this added dimension greatly increases the

number of candidate models to be estimated. In many applications, how-

ever, it is typically set to one on theoretical grounds. It has been argued

(see, for example, Kräger and Kugler, 1993) that in the context of financial

markets, it is most likely that the most recent past value of the state-

determining variable would be the one to determine the current state,

rather than that value two, three, . . . periods ago.

Estimation of the autoregressive coefficients can then be achieved using

NLS. Further details of the procedure are discussed in Franses and van Dijk

(2000, chapter 3).

9.10 Specification tests in the context of Markov switching and
threshold autoregressive models: a cautionary note

In the context of both Markov switching and TAR models, it is of interest

to determine whether the threshold models represent a superior fit to

the data relative to a comparable linear model. A tempting, but incorrect,

way to examine this issue would be to do something like the following:

estimate the desired threshold model and the linear counterpart, and

compare the residual sums of squares using an F-test. However, such an

approach is not valid in this instance owing to unidentified nuisance

parameters under the null hypothesis. In other words, the null hypoth-

esis for the test would be that the additional parameters in the regime

switching model were zero so that the model collapsed to the linear spec-

ification, but under the linear model, there is no threshold. The upshot

is that the conditions required to show that the test statistics follow a
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standard asymptotic distribution do not apply. Hence analytically derived

critical values are not available, and critical values must be obtained via

simulation for each individual case. Hamilton (1994) provides substitute

hypotheses for Markov switching model evaluation that can validly be

tested using the standard hypothesis testing framework, while Hansen

(1996) offers solutions in the context of TAR models.

This chapter will now examine two applications of TAR modelling in

finance: one to the modelling of exchange rates within a managed floating

environment, and one to arbitrage opportunities implied by the difference

between spot and futures prices for a given asset. For a (rather technical)

general survey of several TAR applications in finance, see Yadav, Pope and

Paudyal (1994).

9.11 A SETAR model for the French franc–German mark exchange rate

During the 1990s, European countries which were part of the Exchange

Rate Mechanism (ERM) of the European Monetary System (EMS), were re-

quired to constrain their currencies to remain within prescribed bands

relative to other ERM currencies. This seemed to present no problem by

early in the new millenium since European Monetary Union (EMU) was

already imminent and conversion rates of domestic currencies into Eu-

ros were already known. However, in the early 1990s, the requirement

that currencies remain within a certain band around their central parity

forced central banks to intervene in the markets to effect either an appre-

ciation or a depreciation in their currency. A study by Chappell et al. (1996)

considered the effect that such interventions might have on the dynamics

and time series properties of the French franc--German mark (hereafter

FRF--DEM) exchange rate. ‘Core currency pairs’, such as the FRF--DEM were

allowed to move up to ±2.25% either side of their central parity within the

ERM. The study used daily data from 1 May 1990 until 30 March 1992. The

first 450 observations are used for model estimation, with the remaining

50 being retained for out-of-sample forecasting.

A self-exciting threshold autoregressive (SETAR) model was employed

to allow for different types of behaviour according to whether the ex-

change rate is close to the ERM boundary. The argument is that, close to

the boundary, the respective central banks will be required to intervene

in opposite directions in order to drive the exchange rate back towards

its central parity. Such intervention may be expected to affect the usual

market dynamics that ensure fast reaction to news and the absence of

arbitrage opportunities.
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Table 9.5 SETAR model for FRF–DEM

Number of
Model For regime observations

Êt = 0.0222 + 0.9962Et−1 Et−1 < 5.8306 344
(0.0458) (0.0079)

Êt = 0.3486 + 0.4394Et−1 + 0.3057Et−2 + 0.1951Et−3 Et−1 ≥ 5.8306 103
(0.2391) (0.0889) (0.1098) (0.0866)

Source: Chappell et al. (1996). Reprinted with permission of John Wiley and Sons.

Let Et denote the log of the FRF--DEM exchange rate at time t . Chappell

et al. (1996) estimate two models: one with two thresholds and one with

one threshold. The former was anticipated to be most appropriate for the

data at hand since exchange rate behaviour is likely to be affected by

intervention if the exchange rate comes close to either the ceiling or the

floor of the band. However, over the sample period employed, the mark

was never a weak currency, and therefore the FRF--DEM exchange rate

was either at the top of the band or in the centre, never close to the

bottom. Therefore, a model with one threshold is more appropriate since

any second estimated threshold was deemed likely to be spurious.

The authors show, using DF and ADF tests, that the exchange rate se-

ries is not stationary. Therefore, a threshold model in the levels is not

strictly valid for analysis. However, they argue that an econometrically

valid model in first difference would lose its intuitive interpretation, since

it is the value of the exchange rate that is targeted by the monetary au-

thorities, not its change. In addition, if the currency bands are work-

ing effectively, the exchange rate is constrained to lie within them, and

hence in some senses of the word, it must be stationary, since it cannot

wander without bound in either direction. The model orders for each

regime are determined using AIC, and the estimated model is given in

table 9.5.

As can be seen, the two regimes comprise a random walk with drift

under normal market conditions, where the exchange rate lies below a

certain threshold, and an AR(3) model corresponding to much slower mar-

ket adjustment when the exchange rate lies on or above the threshold.

The (natural log of) the exchange rate’s central parity over the period was

5.8153, while the (log of the) ceiling of the band was 5.8376. The estimated

threshold of 5.8306 is approximately 1.55% above the central parity, while

the ceiling is 2.25% above the central parity. Thus, the estimated threshold

is some way below the ceiling, which is in accordance with the authors’
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Table 9.6 FRF–DEM forecast accuracies

Steps ahead

1 2 3 5 10

Panel A: mean squared forecast error
Random walk 1.84E-07 3.49E-07 4.33E-07 8.03E-07 1.83E-06
AR(2) 3.96E-07 1.19E-06 2.33E-06 6.15E-06 2.19E-05
One-threshold SETAR 1.80E-07 2.96E-07 3.63E-07 5.41E-07 5.34E-07
Two-threshold SETAR 1.80E-07 2.96E-07 3.63E-07 5.74E-07 5.61E-07

Panel B: Median squared forecast error
Random walk 7.80E-08 1.04E-07 2.21E-07 2.49E-07 1.00E-06
AR(2) 2.29E-07 9.00E-07 1.77E-06 5.34E-06 1.37E-05
One-threshold SETAR 9.33E-08 1.22E-07 1.57E-07 2.42E-07 2.34E-07
Two-threshold SETAR 1.02E-07 1.22E-07 1.87E-07 2.57E-07 2.45E-07

Source: Chappell et al. (1996). Reprinted with permission of John Wiley and Sons.

expectations since the central banks are likely to intervene before the

exchange rate actually hits the ceiling.

Forecasts are then produced for the last 50 observations using the

threshold model estimated above, the SETAR model with two thresholds,

a random walk and an AR(2) (where the model order was chosen by in-

sample minimisation of AIC). The results are presented here in table 9.6.

For the FRF--DEM exchange rate, the one-threshold SETAR model is

found to give lower mean squared errors than the other three models for

one-, two-, three-, five- and ten-step-ahead forecasting horizons. Under the

median squared forecast error measure, the random walk is marginally

superior to the one threshold SETAR one and two steps ahead, while it

has regained its prominence by three steps ahead.

However, in a footnote, the authors also argue that the SETAR model was

estimated and tested for 9 other ERM exchange rate series, but in every one

of these other cases, the SETAR models produced less accurate forecasts

than a random walk model. A possible explanation for this phenomenon

is given in section 9.13.

Brooks (2001) extends the work of Chappell et al. to allow the conditional

variance of the exchange rate series to be drawn from a GARCH process

which itself contains a threshold, above which the behaviour of volatility

is different to that below. He finds that the dynamics of the conditional

variance are quite different from one regime to the next, and that models

allowing for different regimes can provide superior volatility forecasts

compared to those which do not.
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9.12 Threshold models and the dynamics of the FTSE 100
index and index futures markets

One of the examples given in chapter 7 discussed the implications for the

effective functioning of spot and futures markets of a lead--lag relationship

between the two series. If the two markets are functioning effectively, it

was also shown that a cointegrating relationship between them would be

expected.

If stock and stock index futures markets are functioning properly, price

movements in these markets should be best described by a first order

vector error correction model (VECM) with the error correction term being

the price differential between the two markets (the basis). The VECM could

be expressed as
[

� ft

�st

]

=

[

π11

π21

]

[ ft−1 − st−1 ] +

[

u1t

u2t

]

(9.27)

where � ft and �st are changes in the log of the futures and spot prices,

respectively, π11 and π21 are coefficients describing how changes in the

spot and futures prices occur as a result of the basis. Writing these two

equations out in full, the following would result

ft − ft−1 = π11[ ft−1 − st−1] + u1t (9.28)

st − st−1 = π21[ ft−1 − st−1] + u2t (9.29)

Subtracting (9.29) from (9.28) would give the following expression

( ft − ft−1) − (st − st−1) = (π11 − π21)[ ft−1 − st−1] + (u1t − u2t ) (9.30)

which can also be written as

( ft − st ) − ( ft−1 − st−1) = (π11 − π21)[ ft−1 − st−1] + (u1t − u2t ) (9.31)

or, using the result that bt = ft − st

bt − bt−1 = (π11 − π21)bt−1 + εt (9.32)

where εt = u1t − u2t . Taking bt−1 from both sides

bt = (π11 − π21 − 1)bt−1 + εt (9.33)

If the first order VECM is appropriate, then it is not possible to identify

structural equations for returns in stock and stock index futures mar-

kets with the obvious implications for predictability and the two markets

are indeed efficient. Hence, for efficient markets and no arbitrage, there

should be only a first order autoregressive process describing the basis
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and no further patterns. Recent evidence suggests, however, that there

are more dynamics present than should be in effectively functioning mar-

kets. In particular, it has been suggested that the basis up to three trading

days prior carries predictive power for movements in the FTSE 100 cash

index, suggesting the possible existence of unexploited arbitrage oppor-

tunities. The paper by Brooks and Garrett (2002) analyses whether such

dynamics can be explained as the result of different regimes within which

arbitrage is not triggered and outside of which arbitrage will occur. The

rationale for the existence of different regimes in this context is that the

basis (adjusted for carrying costs if necessary), which is very important in

the arbitrage process, can fluctuate within bounds determined by transac-

tion costs without actually triggering arbitrage. Hence an autoregressive

relationship between the current and previous values of the basis could

arise and persist over time within the threshold boundaries since it is

not profitable for traders to exploit this apparent arbitrage opportunity.

Hence there will be thresholds within which there will be no arbitrage

activity but once these thresholds are crossed, arbitrage should drive the

basis back within the transaction cost bounds. If markets are function-

ing effectively then irrespective of the dynamics of the basis within the

thresholds, once the thresholds have been crossed the additional dynam-

ics should disappear.

The data used by Brooks and Garrett (2002) are the daily closing prices

for the FTSE 100 stock index and stock index futures contract for the

period January 1985--October 1992. The October 1987 stock market crash

occurs right in the middle of this period, and therefore Brooks and Garrett

conduct their analysis on a ‘pre-crash’ and a ‘post-crash’ sample as well as

the whole sample. This is necessary since it has been observed that the

normal spot/futures price relationship broke down around the time of

the crash (see Antoniou and Garrett, 1993). Table 9.7 shows the coefficient

estimates for a linear AR(3) model for the basis.

The results for the whole sample suggest that all of the first three lags

of the basis are significant in modelling the current basis. This result

is confirmed (although less strongly) for the pre-crash and post-crash sub-

samples. Hence, a linear specification would seem to suggest that the basis

is to some degree predictable, indicating possible arbitrage opportunities.

In the absence of transactions costs, deviations of the basis away from

zero in either direction will trigger arbitrage. The existence of transac-

tions costs, however, means that the basis can deviate from zero without

actually triggering arbitrage. Thus, assuming that there are no differen-

tial transactions costs, there will be upper and lower bounds within which

the basis can fluctuate without triggering arbitrage. Brooks and Garrett
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Table 9.7 Linear AR(3) model for the basis

bt = φ0 + φ1bt−1 + φ2bt−2 + φ3bt−3 + εt

Parameter Whole sample Pre-crash sample Post-crash sample

φ1 0.7051∗∗ 0.7174∗∗ 0.6791∗∗

(0.0225) (0.0377) (0.0315)

φ2 0.1268∗∗ 0.0946∗ 0.1650∗∗

(0.0274) (0.0463) (0.0378)

φ3 0.0872∗∗ 0.1106∗∗ 0.0421
(0.0225) (0.0377) (0.0315)

Notes: Figures in parentheses are heteroscedasticity-robust standard errors; ∗ and ∗∗

denote significance at the 5% and 1% levels, respectively.

Source: Brooks and Garrett (2002).

(2002) estimate a SETAR model for the basis, with two thresholds (three

regimes) since these should correspond to the upper and lower boundaries

within which the basis can fluctuate without causing arbitrage. Under

efficient markets, profitable arbitrage opportunities will not be present

when r0 ≤ bt−1 < r1 where r0 and r1 are the thresholds determining which

regime the basis is in. If these thresholds are interpreted as transactions

costs bounds, when the basis falls below the lower threshold (r0), the

appropriate arbitrage transaction is to buy futures and short stock. This

applies in reverse when the basis rises above r1. When the basis lies within

the thresholds, there should be no arbitrage transactions. Three lags of

the basis enter into each equation and the thresholds are estimated using

a grid search procedure. The one-period lag of the basis is chosen as the

state-determining variable. The estimated model for each sample period

is given in table 9.8.

The results show that, to some extent, the dependence in the basis is

reduced when it is permitted to be drawn from one of three regimes

rather than a single linear model. For the post-crash sample, and to some

extent for the whole sample and the pre-crash sample, it can be seen

that there is considerably slower adjustment, evidenced by the significant

second and third order autoregressive terms, between the thresholds than

outside them. There still seems to be some evidence of slow adjustment

below the lower threshold, where the appropriate trading strategy would

be to go long the futures and short the stock. Brooks and Garrett (2002)

attribute this in part to restrictions on and costs of short-selling the stock

that prevent adjustment from taking place more quickly. Short-selling of

futures contracts is easier and less costly, and hence there is no action in

the basis beyond an AR(1) when it is above the upper threshold.
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Table 9.8 A two-threshold SETAR model for the basis

bt =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

φ0
1 +

3
∑

i=1

φ1
i bt−i + ε1

t if bt−1 < r0

φ0
2 +

3
∑

i=1

φ2
i bt−i + ε2

t if r0 ≤ bt−1 < r1

φ0
3 +

3
∑

i=1

φ3
i bt−i + ε3

t if bt−1 ≥ r1

bt−1 < r0 r0 ≤ bt−1 < r1 bt−1 ≥ r1

Panel A: whole sample

φ1 0.5743∗∗ −0.6395 0.8380∗∗

(0.0415) (0.7549) (0.0512)
φ2 0.2088∗∗ −0.0594 0.0439

(0.0401) (0.0846) (0.0462)
φ3 0.1330∗∗ 0.2267∗∗ 0.0415

(0.0355) (0.0811) (0.0344)
r̂0 0.0138
r̂1 0.0158

Panel B: pre-crash sample

φ1 0.4745∗∗ 0.4482∗ 0.8536∗∗

(0.0808) (0.1821) (0.0720)
φ2 0.2164∗∗ 0.2608∗∗ −0.0388

(0.0781) (0.0950) (0.0710)
φ3 0.1142 0.2309∗∗ 0.0770

(0.0706) (0.0834) (0.0531)
r̂0 0.0052
r̂1 0.0117

Panel C: post-crash sample

φ1 0.5019∗∗ 0.7474∗∗ 0.8397∗∗

(0.1230) (0.1201) (0.0533)
φ2 0.2011∗ 0.2984∗∗ 0.0689

(0.0874) (0.0691) (0.0514)
φ3 0.0434 0.1412 0.0461

(0.0748) (0.0763) (0.0400)
r̂0 0.0080
r̂1 0.0140

Notes: Figures in parentheses are heteroscedasticity-robust standard

errors, ∗ and ∗∗ denote significance at the 5% and at 1% levels,

respectively.

Source: Brooks and Garrett (2002).
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Such a finding is entirely in accordance with expectations, and suggests

that, once allowance is made for reasonable transactions costs, the basis

may fluctuate with some degree of flexibility where arbitrage is not prof-

itable. Once the basis moves outside the transactions costs-determined

range, adjustment occurs within one period as the theory predicted.

9.13 A note on regime switching models and forecasting accuracy

Several studies have noted the inability of threshold or regime switching

models to generate superior out-of-sample forecasting accuracy than linear

models or a random walk in spite of their apparent ability to fit the data

better in sample. A possible reconciliation is offered by Dacco and Satchell

(1999), who suggest that regime switching models may forecast poorly

owing to the difficulty of forecasting the regime that the series will be

in. Thus, any gain from a good fit of the model within the regime will be

lost if the model forecasts the regime wrongly. Such an argument could

apply to both the Markov switching and TAR classes of models.

Key concepts
The key terms to be able to define and explain from this chapter are
● seasonality ● intercept dummy variable

● slope dummy variable ● dummy variable trap

● regime switching ● threshold autoregression (TAR)

● self-exciting TAR ● delay parameter

● Markov process ● transition probability

Review questions

1. A researcher is attempting to form an econometric model to explain daily

movements of stock returns. A colleague suggests that she might want

to see whether her data are influenced by daily seasonality.

(a) How might she go about doing this?

(b) The researcher estimates a model with the dependent variable as

the daily returns on a given share traded on the London stock

exchange, and various macroeconomic variables and accounting

ratios as independent variables. She attempts to estimate this

model, together with five daily dummy variables (one for each day of

the week), and a constant term, using EViews. EViews then tells her

that it cannot estimate the parameters of the model. Explain what

has probably happened, and how she can fix it.
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(c) A colleague estimates instead the following model for asset returns,

rt is as follows (with standard errors in parentheses)

r̂t = 0.0034 − 0.0183D1t + 0.0155D2t − 0.0007D3t

(0.0146) (0.0068) (0.0231) (0.0179)

−0.0272D4t + other variables

(0.0193) (9.34)

The model is estimated using 500 observations. Is there significant

evidence of any ‘day-of-the-week effects’ after allowing for the effects

of the other variables?

(d) Distinguish between intercept dummy variables and slope dummy

variables, giving an example of each.

(e) A financial researcher suggests that many investors rebalance their

portfolios at the end of each financial year to realise losses and

consequently reduce their tax liabilities. Develop a procedure to test

whether this behaviour might have an effect on equity returns.

2. (a) What is a switching model? Describe briefly and distinguish between

threshold autoregressive models and Markov switching models. How

would you decide which of the two model classes is more

appropriate for a particular application?

(b) Describe the following terms as they are used in the context of

Markov switching models

(i) The Markov property

(ii) A transition matrix.

(c) What is a SETAR model? Discuss the issues involved in estimating

such a model.

(d) What problem(s) may arise if the standard information criteria

presented in chapter 5 were applied to the determination of the

orders of each equation in a TAR model? How do suitably modified

criteria overcome this problem?

(e) A researcher suggests a reason that many empirical studies find that

PPP does not hold is the existence of transactions costs and other

rigidities in the goods markets. Describe a threshold model

procedure that may be used to evaluate this proposition in the

context of a single good.

(f) A researcher estimates a SETAR model with one threshold and three

lags in both regimes using maximum likelihood. He then estimates a

linear AR(3) model by maximum likelihood and proceeds to use a

likelihood ratio test to determine whether the non-linear threshold

model is necessary. Explain the flaw in this approach.
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(g) ‘Threshold models are more complex than linear autoregressive

models. Therefore, the former should produce more accurate

forecasts since they should capture more relevant features of the

data.’ Discuss.

3. A researcher suggests that the volatility dynamics of a set of daily equity

returns are different:

● on Mondays relative to other days of the week

● if the previous day’s return volatility was bigger than 0.1% relative to

when the previous day’s return volatility was less than 0.1%.

Describe models that could be used to capture these reported features

of the data.

4. (a) Re-open the exchange rate returns series and test them for

day-of-the-week effects.

(b) Re-open the house price changes series and determine whether

there is any evidence of seasonality.


